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Introduction 

 

This thesis is concerned with malicious software 

detection using machine learning techniques. With the 

exponential grow of malicious software during the last 

five years that reached 80 millions of different malware 

this year and the more sophisticated methods this kind of 

software now have to protect themselves from different 

forms of detection, newer methods of detection were a 

necessary thing in anti-malware industry.  

My thesis discusses the necessary steps for creating such 

a malware detection system. The design of such a system 

is discussed from two separate perspectives (an 

academic one and a practical one). The practical aspects 

of a malware detection system came with a serious of 

constraints that this system should meet: 

 A very low false positive rate (0 if possible). This is 

maybe the most important one. While from a strictly 

academic point of view a percentage of 0.01% false 

alarms is something acceptable, if this percentage 



means more than 10 or 20 files it becomes 

unacceptable for practical usage.  

 Creating a model or the signature database should be 

done in an acceptable time. This is necessary because 

this system should be able to adjust to the rapid 

changes in malware evolution. This involves using 

distributed system or different code optimizations. 

 The detection part of this system should be feasible 

for different architectures. This part will run on a 

client computer so it has to be fast and it should 

require very few memory resources. 

 Ensures that the model created will provide a 

sufficient detection in time (e.g. a model created now 

will still detect new malware in a couple of months). 

The following steps should be made to create such a 

detection system: 

 Creating a large database of both malware and clean 

files. As the databases grow, the number of “noises” 

(incorrectly classified files in the databases) will 

grow as well. New method for detecting these noises 

should be developed. 



 Create a set of features that will be used with 

different machine learning algorithms. 

 Analyzing different machine learning algorithms and 

determine the best one that can be used in such a 

system.  

 Adapt and modify the selected algorithm to comply 

with the previously described practical constraints. 

This will mean to adjust or change the algorithm for 

new type of malware. 

Some of these steps should be consider as a continuous 

process (e.g. creating a set of features or collecting 

malware and clean files). The only step in this process 

that was limited to a specific period of time was the 

analysis of the different machine learning algorithms.  

Collections  

In case of a clean file, the process is usually 

simple. The basic idea is to create a large set of files that 

belong to the most popular applications. So, all one 

needs to do is to crawl most of the biggest download 

sites and download every application that they have. It is 



also important to have all of the OS system files and OS 

related (drivers, service packs) for every language. There 

are 2 methods usually used to collect these files: 

 Having a sort of crawling system. This will search 

for new applications with a download site and 

download them. This form of collecting clean 

information can be extended to different FTP 

locations, P2P sharing, torrents and other forms of 

sharing.  

 Using a virtual environment. This is necessary in 2 

cases: 

 In case of some operating system or other 

application, there is no direct method to upload a 

new version.  

 In case of net-installers  

This kind of system managed to download almost 39.000 

new kits every day. This means almost 15 millions of 

kits every year and almost 70 millions of kits for the last 

5 years. For malware collection the following methods 

were used: 

 Honey-pots to collect different malware files.  



 Use malware-URL to download malware.  

 Use different external sources (web-sites that have 

collections of malware). 

 Analyzes different feeds of spam-emails  

 Exchange with different organizations that have 

malware collections.  

 In case of file-infectors, more samples can be 

obtained by executing an infected file in a virtual 

environment, and wait to infect other files.  

Feature creation 

Feature creation means extracting a set of 

characteristics for every file. However due to the large 

variety of file types I’ve focused on executable files (as 

this is the most common format used by malware) and 

script related files. These features can be a static attribute 

(something obtained by static analysis of the file), a 

dynamic attribute or characteristic (something obtained 

through emulation or execution in a virtual environment 

and observing the behavior of the executed sample file) 



or virtual attributes (that is a combination of previous 

types).  

 Attributes lists can be viewed as a pair (key, 

value) where the key is the name / identifier of the 

attribute and the value is its value. Attributes value can 

be one of the following (Boolean, Numeric, Enumeration 

values, Bit sets or strings). 

In case of portable executable files, the following 

attributes can be extracted: header information, file 

hashes, imported functions, imported libraries count, 

exported functions, compiler used, Packers/Protectors 

used, Installer/Interpreters/Self extract archives/etc, 

resource information, disassemble information (number 

of call instructions used, API calls,  … ), different 

dynamically obtained information (usually counters for 

different actions that can be obtained from the virtual 

machine – number of threads created, files and registry 

modifications, system objects …) and many more. 

Depending on the type of the script, other 

interesting information can be extracted. For example 

some languages have the ability to dynamically execute 

create and execute code (ECMA based languages 



(JavaScript) is one of them). This ability offers them a 

way to create multiple layers of protection (just like a 

protector or packer for executable files). 

Information that can be extracted from scripts 

base files can be classified as follows: string information 

(different strings that may indicate a specific behavior), 

API/Library function calls and different forms of 

obfuscation such as string addition, usage of random 

name variables or functions, garbage addition and so on. 

During a period of almost 4 years, almost 20000 

features were created. From this set more than 90% of 

these features are Boolean features.  

Machine learning algorithms 

The first step was to find a serious of algorithms 

that would be practical (will comply with the constraints 

previously described). 

 Algorithms like ANN (or derivate) or SVM have a 

large memory and disk footprint and even if these 

algorithm have a good detection rate they cannot be 

use on a practical application for malware detection. 



 I’ve selected the perceptron algorithm as it has a very 

small memory footprint and can be easily integrated 

with the features created. 

The next step was to adjust the perceptron 

algorithm for a 0-false positive detection. The basic idea 

was to split the training phase of the algorithm in two 

parts: 

 First part that is identical to the one of a normal 

perceptron. The database records are analyzed and 

the model is adjusted for every record that is not 

correctly classified. 

 The second part is to select a subset of records from 

the initial database that are labeled as clean. The 

model is then adjusted for every record of this subset 

until every record in this subset is correctly 

classified. 

This method created the first one-side class 

perceptron algorithm. The main problem was that the 

second step was taking way to long. From the original 

algorithm, different versions of this algorithm have been 

developed that further improve the speed needed to make 



this algorithm feasible (the third version of the algorithm 

ware named OCS-1, OCS-2 and OCS-3). Furthermore a 

new version based on lists of features instead of a vector 

of features was used to improve the final algorithm 

(OSC-3).  

The following table shows the time needed for 

OCS-2, OCS-3 and OCS-3L (OCS-3 improved to used 

list) shows the time needed to perform 100 iterations on 

a database of 22 millions of records (malware and clean). 

 

As it can be seen the speed improvement is quite 

substantial. If it is taken under consideration that the 

initial algorithm was almost 350 times slower than OCS-

3 algorithm, than the final algorithm (OCS3-L) is almost 

3400 times faster than the original one. 

Having a 0-False positive algorithm also means a 

lower detection rate. The next step was to find different 

ways to improve the detection rate while maintaining the 
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0 – False positive constraints. There are few steps that 

can be performed in order to do just this: 

 Find a method to improve data separability. This can 

be done by using: 

o Create new features that are more likely to 

separate malware files from the clean files 

o Obtain new features from the old ones in such a 

manner that the resulting set of features will 

better separate the malware files from the clean 

files 

 Combine the same algorithms or multiple algorithms 

to obtain a better result 

o Use a voted system (a set of models obtain either 

with the same algorithm or from different 

algorithms). 

o Use a sort of ensemble system. This means that 

the algorithms are executed in a specific order. 

At each step, the files that are correctly classified 

in a specific class (or in both) are removed from 

the training set (so that the rest of the algorithms 

will only operate on a small set of data).   



o Use a clustering hybrid method that combines a 

decision tree with a OSC based algorithm 

Creating new features means analyzing newly 

malware and find out characteristics that are specific to 

them. Another solution for creating new features is to 

start from a set of existing features and generate new 

features that will improve the detection rate while 

preserving a low false positive rate. The last idea can be 

done in the following way: 

 Analyze value-based features and create new 

Boolean features from them (for example create a 

new feature is the number of sections from a 

specific file is bigger than 10). 

 Apply different operations over two or more 

Boolean features to create a new one. 

 

In the second case, the idea is to use different 

Boolean operators like AND, OR, XOR and apply them 

over two or more features to create a new one. One 

simple way of doing this is to map every two features 

into a higher space: 



The next solution used to improve the detection 

rate was an ensemble-like algorithm. This works 

especially if the algorithms used can separate a subset of 

records that belong to the same class (for example KNN 

based algorithm). The same thing can be applied to an 

OSC based algorithm. Let’s assume that an OSC based 

algorithm creates a hyper-plane that correctly classifies 

all of the clean files (most likely all of the clean files and 

some of the malware files will be on the side of the 

hyper-plane) and on the other side will only be the 

malware files correctly classified. This means that this 

algorithm can identify a subset of files of the sample 

label. For the OSC-based algorithms it is better to use 

different labeled subsets on every iteration.  

 

Another way to improve detection is to use a 

vote-like system – that uses multiple models with 

different weights associated to them for classification. 

The last solution is to create a form of decision tree that 

acts as a pre-filter for a set of models obtained with an 

OCS-3 algorithm.   



 

The previous table describes the results obtained 

using some of the presented mechanisms. OSC-3 

algorithm is the standard algorithm and was added as a 

reference. OSC3-MedianClose-D8 algorithm had the 

best result (it a decision tree based OSC-3 algorithm that 

uses MedianClose score and has a depth of 8).  

 The following graphic describes an experiment 

that was made to test proactivity. Over a period of 55 

weeks both malware and clean samples were collected. 

The data collected after the first 40 weeks was used to 

create different models. Those models were then tested 

over the data collected from the next 15 weeks. For each 

record the detection rate and the false positive rate was 

53.40%

69.55%

54.71%

61.63%

99.53%
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recorded and analyze. The following graphic shows the 

detection rate evolution over 14 weeks for 5 different 

models. 

 

DataBase noises 

In anti-malware industry, a common problem is 

that large data bases are not pure. The purity in most 

cases means that a malware sample is labeled as clean or 
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a clean sample is labeled as malware. There are 3 major 

factors that influence the purity of a sample set: human 

error, difference of opinions between different anti-

malware vendors and samples that cannot be correctly 

separated through a linear classifier (this includes 

grayware files, file infectors, patchers, installers, 

interpreted languages, damaged files, ). 

The best way when analyzing noise is to have a 

manual analysis of the data. Besides the correct label of 

the data analyzed, this type of analysis can provide you 

with information regarding the feature extraction 

methods.  

Finding possible noise can be done in the 

following way: searching similar files, based on the 

possibility of discovering with a high degree of certainty 

malware or clean files, if the source of a specific file is a 

trusted one, using the distance to a hyper-place, or a 

vote/ensemble system that uses the previously methods. 

The main problem with the similarity method is that the 

Similarity Score has to be computed for every pair 

formed from one malware and one clean file. If we’re 

using a large database (over 20 millions of record) than 



the time needed to compute the similarity distance 

between all of these pairs will be far too much for this 

method to be consider a practical solution. There are two 

things that can be done in this case: use a distributed 

system to perform all of the operations or use a 

clustering/classification method to split the large data 

base into smaller ones that are more manageable. 

In case of the second idea, different methods for 

creating that tree were used – and for each method the 

total number of clusters and the estimated time needed to 

compute all of the similarity scores from that cluster 

were computed.  

Method Cluster

s 

Max 

cluster size 

 Estimated 

time  

AbsDiff 
958  6,314,834  

177 days 

00:49:01 

F1 
6,420  2,522,738  

16 days 

07:23:35 

F2 
6,380  4,253,007  

11 days 

07:54:03 

Information Gain 
12  9,784,482  

1 year 132 days 

17:39:51 

Asymetric 

Uncertainty 
102  6,314,834  

177 days 

20:20:16 

Median Close 42,541  61,705  3:30:08 

ProcDiff 31,056  119,270  1:07:32 



The selected methods were MedianClose (further 

denoted as MC) and ProcDiff (further denoted as PD). On the 

clusters/subsets created with these methods I’ve computed the 

following distances (that worked as a Similarity function): 

Manhattan (MH), Weighted Manhattam (WMH), CommonSet 

(CS)  (a score that measure the percentage of common 

features from the total number of features that are present in 

two records) and also some combination of those (votes). For 

each method the following data were computed: Noise 

percentage (NP) – represents the percentage of real noises 

from the possible noises, Total noise percentage (TNP) – 

represents the percentage of real noises found by a specific 

method from the total real noises that exists in a database and 

Global noise score (GNS) defined as follows: 

𝐺𝑙𝑜𝑏𝑎𝑙𝑁𝑜𝑖𝑠𝑒𝑆𝑐𝑜𝑟𝑒 =  𝑁𝑃 × 𝑘 +  𝑇𝑁𝑃 ×  1− 𝑘   

For this experiment the value of “k” was set to 0.5. 

Method NP TNP GNS 

(k=0.5) 

MC_CS 5.62% 97.64% 51.63 

PD_MH 14.02% 35.34% 24.68 

PD_CS 7.73% 61.49% 34.61 

V1_[MC_MH]_[PD_CS] 6.99% 65.34% 36.17 

V1_[MC_CS]_[PD_WMH] 5.56% 97.99% 51.78 

V1_[MC_CS]_[PD_MH] 5.58% 98.03% 51.80 

V1_[MC_CS]_[PD_CS] 5.38% 99.73% 52.56 

VALL_[MC_CSt]_[PD_CS] 8.74% 59.40% 34.07 

 



The results showed that the CommonSet measure either 

used alone or in combination with another measures can 

provide very good results for noise identification in large 

data bases. 

Script malware research 

This section includes the analysis of malware that 

are not executed as a native code, but rather interpreted. 

This category includes: various script base malware 

(JavaScript, VBScript, AutoIT, and so on), virtual 

machine base malware (Java or MSIL based malware), 

document base malware (PDF, Microsoft Word, etc).  

Since in all of these cases the original source can 

be obtained, the mechanisms that these malware can use 

are usually based on obfuscation techniques so that 

reading and understanding that malware is  quite 

difficult. The most common one used are: 

 Renaming every function, variable, class or 

namespace to a randomly generated name 

 Add different comment with random content  

 Split strings into multiple values  



 Use different arithmetic operations to obtain the 

same result. 

 Change the order of the code in such a way so that 

the execution flow will remain unchanged 

 Remove indentation if the language grammar allows 

it 

 Use specialized instructions like “eval” if the 

language supports it, to create different layers of 

obfuscation. 

Even if the techniques required to analyze this 

sort of malware are the same for similar languages, I will 

focus on analyzing JavaScript malware and JavaScript 

based documents (especially PDF documents) since this 

is the most common type of malware.  The special focus 

in this case was to create clusters that will include 

different malware families. The following approaches 

were used: 

 First one is a Hierarchical bottom up clustering and it 

is based on a metric function that measures the 

distance between two files. The main problem in this 



case was O(n
2
)  time complexity needed to compute 

the distance between every possible pairs of files.  

 The second method is based on a hash-table 

algorithm and it was designed so that it will have a 

linear time complexity and still have a very good 

clustering accuracy.  

Both of these approaches used a file fingerprint 

(in this case a list of tokens from the files and their count 

from witch some well known tokens used for 

obfuscation (comments …) are removed). Two 

experiments were made. First one was to see the speed 

difference for clustering 10000 malicious PDF files 

using the two previously described methods. 

Clustering Algorithm Clustering time 

Hash Table clustering 1 second 

Hierarchical bottom up 

clustering (using custom 

metric distance – PDF 

Metric) 

1 day, 21 minutes, 33 

seconds 

 

It is obvious that the hash table clustering was 

much faster. However, since the hierarchical bottom up 

clustering needed one day to complete the clustering for 



around 10000 files, it was not included in the clustering 

process of the large data based (due to time constrains). 

Then only the hash-table algorithm was used to cluster a 

large data base of malicious PDF files ( aprox.1 million 

malicious PDF files). 419 clusters were created. To 

verify the integrity of those clusters the 5 biggest one 

were selected for manual analysis and for each of them 

the actual number of files that should have been cluster 

in the same cluster was computed. 

Cluster Files Manually 

analyzed files 

Similar files in 

the cluster 

#1  90502 4600 100% 

#2 63792 3200 99.9% 

#3 43816 2200 100% 

#4 33389 1700 99.8% 

#5 27080 1500 100% 

 

In two cases, in cluster #2 and #4  were some 

scripts with slightly different tokens; however those 

scripts looked more like a derivate from the rest of the 

scripts than like a totally different script. This test proved 

than having a variable normalization factor is much 

appropriate for these databases than a fixed one. 



GML Framework 

GML stands for Generic Machine Learning 

Framework. It was develop as a tool to help test and 

research different machine learning algorithms.  GML is 

written in C/C++ with different inline optimizations and 

assemble code. 

It was design as a modular system with four 

major components: 

 Algorithm component. This is the main component 

that receives data from other components and 

performs the algorithm. It has a build-in 

multithreading functions that allows one to easily use 

parallelism for a specific algorithm 

 A database component. This is the component that 

holds the data in different formats (text, SQL, binary 

…).  

 A connector component. This component links the 

algorithm component with the database component - 

and translates the data from the database in a format 

that is easily used by the algorithm components.  



 A notifier component. This is a common global 

component that is used to show information about 

the state of the algorithm, database or the connectors.  

All of these components have a library as a core unit that 

provides different functionalities: 

 Interfaces for database usage and types 

 Support for different string operations  

 Support for a JSON-like format  

 Support for parallelization (multi-threading) 

 Support for different list-based function  

 Different mathematical operations that are usually 

used in a machine learning algorithm (such as 

different kernel function, distance function, hyper-

plane operation, and many more).  

Over this architecture there is a Python wrapper that 

allows one to easily use and adapt different algorithms. 

  



Conclusion and Feature Work 

This thesis presented different practical aspects 

needed to improve malware detection mechanisms. All 

of the methods presented should not be consider as 

sufficient – in practice all of these methods are 

complementary and work together with static and 

dynamic detection and/or exclusion mechanisms as well. 

However, the use of these methods will greatly 

improve the proactivity and the detection rate of any 

anti-malware product. As a particular case, applied on 

BitDefender engines these methods increase the 

detection rate to the point where most important 

independent tests consider BitDefender to the  product 

with the best detection. 

The work in this domain is far from being over. 

With the new cloud technologies that become more 

popular in the last two years new type of detection would 

emerge. The idea is to combine the data that is receive 

from different clients and create a semi-unsupervised 

system that would adapt itself to new malware attacks. 

This will not be an easy task, as the quantity of data that 



can be received from every client can be huge. All of the 

algorithms will have to be design for both local and 

cloud decisions creating a sort of large neural network. 

The use of cloud system for malware detection will 

allow other algorithms (like support vector machine or 

artificial neural networks) to be used. These algorithms 

are normally consider not to be practical as they need 

space and computing power that is not available on a 

client local machine. However, moving this sort of 

detection into cloud and combining with different 

parallelization methods may create newer and better 

detection methods. 

The evolution of graphical video cards is also a 

new direction that can be considered as important. 

Newer graphic video cards have multiple processors that 

can highly improve the time needed for data processing. 

Similar operations can be performed using cloud 

processing units. 

Last but not least, similar researcher as this thesis 

can be perform on other platforms – as Android malware 

tends to grow newer and different methods should be 

created for this type of threat.  


