

University “Alexandru Ioan

Cuza” of Iasi, Romania

Faculty of Computer Science

Meta-heuristics for anti-

malware systems

PhD Candidate

Gavrilut Dragos Teodor

Supervisor

Prof. PhD Henri Luchian

- Abstract –

Introduction

This thesis is concerned with malicious software

detection using machine learning techniques. With the

exponential grow of malicious software during the last

five years that reached 80 millions of different malware

this year and the more sophisticated methods this kind of

software now have to protect themselves from different

forms of detection, newer methods of detection were a

necessary thing in anti-malware industry.

My thesis discusses the necessary steps for creating such

a malware detection system. The design of such a system

is discussed from two separate perspectives (an

academic one and a practical one). The practical aspects

of a malware detection system came with a serious of

constraints that this system should meet:

 A very low false positive rate (0 if possible). This is

maybe the most important one. While from a strictly

academic point of view a percentage of 0.01% false

alarms is something acceptable, if this percentage

means more than 10 or 20 files it becomes

unacceptable for practical usage.

 Creating a model or the signature database should be

done in an acceptable time. This is necessary because

this system should be able to adjust to the rapid

changes in malware evolution. This involves using

distributed system or different code optimizations.

 The detection part of this system should be feasible

for different architectures. This part will run on a

client computer so it has to be fast and it should

require very few memory resources.

 Ensures that the model created will provide a

sufficient detection in time (e.g. a model created now

will still detect new malware in a couple of months).

The following steps should be made to create such a

detection system:

 Creating a large database of both malware and clean

files. As the databases grow, the number of “noises”

(incorrectly classified files in the databases) will

grow as well. New method for detecting these noises

should be developed.

 Create a set of features that will be used with

different machine learning algorithms.

 Analyzing different machine learning algorithms and

determine the best one that can be used in such a

system.

 Adapt and modify the selected algorithm to comply

with the previously described practical constraints.

This will mean to adjust or change the algorithm for

new type of malware.

Some of these steps should be consider as a continuous

process (e.g. creating a set of features or collecting

malware and clean files). The only step in this process

that was limited to a specific period of time was the

analysis of the different machine learning algorithms.

Collections

In case of a clean file, the process is usually

simple. The basic idea is to create a large set of files that

belong to the most popular applications. So, all one

needs to do is to crawl most of the biggest download

sites and download every application that they have. It is

also important to have all of the OS system files and OS

related (drivers, service packs) for every language. There

are 2 methods usually used to collect these files:

 Having a sort of crawling system. This will search

for new applications with a download site and

download them. This form of collecting clean

information can be extended to different FTP

locations, P2P sharing, torrents and other forms of

sharing.

 Using a virtual environment. This is necessary in 2

cases:

 In case of some operating system or other

application, there is no direct method to upload a

new version.

 In case of net-installers

This kind of system managed to download almost 39.000

new kits every day. This means almost 15 millions of

kits every year and almost 70 millions of kits for the last

5 years. For malware collection the following methods

were used:

 Honey-pots to collect different malware files.

 Use malware-URL to download malware.

 Use different external sources (web-sites that have

collections of malware).

 Analyzes different feeds of spam-emails

 Exchange with different organizations that have

malware collections.

 In case of file-infectors, more samples can be

obtained by executing an infected file in a virtual

environment, and wait to infect other files.

Feature creation

Feature creation means extracting a set of

characteristics for every file. However due to the large

variety of file types I’ve focused on executable files (as

this is the most common format used by malware) and

script related files. These features can be a static attribute

(something obtained by static analysis of the file), a

dynamic attribute or characteristic (something obtained

through emulation or execution in a virtual environment

and observing the behavior of the executed sample file)

or virtual attributes (that is a combination of previous

types).

 Attributes lists can be viewed as a pair (key,

value) where the key is the name / identifier of the

attribute and the value is its value. Attributes value can

be one of the following (Boolean, Numeric, Enumeration

values, Bit sets or strings).

In case of portable executable files, the following

attributes can be extracted: header information, file

hashes, imported functions, imported libraries count,

exported functions, compiler used, Packers/Protectors

used, Installer/Interpreters/Self extract archives/etc,

resource information, disassemble information (number

of call instructions used, API calls, …), different

dynamically obtained information (usually counters for

different actions that can be obtained from the virtual

machine – number of threads created, files and registry

modifications, system objects …) and many more.

Depending on the type of the script, other

interesting information can be extracted. For example

some languages have the ability to dynamically execute

create and execute code (ECMA based languages

(JavaScript) is one of them). This ability offers them a

way to create multiple layers of protection (just like a

protector or packer for executable files).

Information that can be extracted from scripts

base files can be classified as follows: string information

(different strings that may indicate a specific behavior),

API/Library function calls and different forms of

obfuscation such as string addition, usage of random

name variables or functions, garbage addition and so on.

During a period of almost 4 years, almost 20000

features were created. From this set more than 90% of

these features are Boolean features.

Machine learning algorithms

The first step was to find a serious of algorithms

that would be practical (will comply with the constraints

previously described).

 Algorithms like ANN (or derivate) or SVM have a

large memory and disk footprint and even if these

algorithm have a good detection rate they cannot be

use on a practical application for malware detection.

 I’ve selected the perceptron algorithm as it has a very

small memory footprint and can be easily integrated

with the features created.

The next step was to adjust the perceptron

algorithm for a 0-false positive detection. The basic idea

was to split the training phase of the algorithm in two

parts:

 First part that is identical to the one of a normal

perceptron. The database records are analyzed and

the model is adjusted for every record that is not

correctly classified.

 The second part is to select a subset of records from

the initial database that are labeled as clean. The

model is then adjusted for every record of this subset

until every record in this subset is correctly

classified.

This method created the first one-side class

perceptron algorithm. The main problem was that the

second step was taking way to long. From the original

algorithm, different versions of this algorithm have been

developed that further improve the speed needed to make

this algorithm feasible (the third version of the algorithm

ware named OCS-1, OCS-2 and OCS-3). Furthermore a

new version based on lists of features instead of a vector

of features was used to improve the final algorithm

(OSC-3).

The following table shows the time needed for

OCS-2, OCS-3 and OCS-3L (OCS-3 improved to used

list) shows the time needed to perform 100 iterations on

a database of 22 millions of records (malware and clean).

As it can be seen the speed improvement is quite

substantial. If it is taken under consideration that the

initial algorithm was almost 350 times slower than OCS-

3 algorithm, than the final algorithm (OCS3-L) is almost

3400 times faster than the original one.

Having a 0-False positive algorithm also means a

lower detection rate. The next step was to find different

ways to improve the detection rate while maintaining the

7:01:52
4:18:48

0:27:48

0:00:00 2:24:00 4:48:00 7:12:00 9:36:00

OCS3-L

OCS3

OCS2

0 – False positive constraints. There are few steps that

can be performed in order to do just this:

 Find a method to improve data separability. This can

be done by using:

o Create new features that are more likely to

separate malware files from the clean files

o Obtain new features from the old ones in such a

manner that the resulting set of features will

better separate the malware files from the clean

files

 Combine the same algorithms or multiple algorithms

to obtain a better result

o Use a voted system (a set of models obtain either

with the same algorithm or from different

algorithms).

o Use a sort of ensemble system. This means that

the algorithms are executed in a specific order.

At each step, the files that are correctly classified

in a specific class (or in both) are removed from

the training set (so that the rest of the algorithms

will only operate on a small set of data).

o Use a clustering hybrid method that combines a

decision tree with a OSC based algorithm

Creating new features means analyzing newly

malware and find out characteristics that are specific to

them. Another solution for creating new features is to

start from a set of existing features and generate new

features that will improve the detection rate while

preserving a low false positive rate. The last idea can be

done in the following way:

 Analyze value-based features and create new

Boolean features from them (for example create a

new feature is the number of sections from a

specific file is bigger than 10).

 Apply different operations over two or more

Boolean features to create a new one.

In the second case, the idea is to use different

Boolean operators like AND, OR, XOR and apply them

over two or more features to create a new one. One

simple way of doing this is to map every two features

into a higher space:

The next solution used to improve the detection

rate was an ensemble-like algorithm. This works

especially if the algorithms used can separate a subset of

records that belong to the same class (for example KNN

based algorithm). The same thing can be applied to an

OSC based algorithm. Let’s assume that an OSC based

algorithm creates a hyper-plane that correctly classifies

all of the clean files (most likely all of the clean files and

some of the malware files will be on the side of the

hyper-plane) and on the other side will only be the

malware files correctly classified. This means that this

algorithm can identify a subset of files of the sample

label. For the OSC-based algorithms it is better to use

different labeled subsets on every iteration.

Another way to improve detection is to use a

vote-like system – that uses multiple models with

different weights associated to them for classification.

The last solution is to create a form of decision tree that

acts as a pre-filter for a set of models obtained with an

OCS-3 algorithm.

The previous table describes the results obtained

using some of the presented mechanisms. OSC-3

algorithm is the standard algorithm and was added as a

reference. OSC3-MedianClose-D8 algorithm had the

best result (it a decision tree based OSC-3 algorithm that

uses MedianClose score and has a depth of 8).

 The following graphic describes an experiment

that was made to test proactivity. Over a period of 55

weeks both malware and clean samples were collected.

The data collected after the first 40 weeks was used to

create different models. Those models were then tested

over the data collected from the next 15 weeks. For each

record the detection rate and the false positive rate was

53.40%

69.55%

54.71%

61.63%

99.53%

OSC-3

OSC-3-MAP5-F2-1-ORIG

ENS-5

VOT-C

OSC3-MedianClose-D8

recorded and analyze. The following graphic shows the

detection rate evolution over 14 weeks for 5 different

models.

DataBase noises

In anti-malware industry, a common problem is

that large data bases are not pure. The purity in most

cases means that a malware sample is labeled as clean or

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Cascade OSC-3-MAP LV-OS

OSC-M-500 OSC-3

a clean sample is labeled as malware. There are 3 major

factors that influence the purity of a sample set: human

error, difference of opinions between different anti-

malware vendors and samples that cannot be correctly

separated through a linear classifier (this includes

grayware files, file infectors, patchers, installers,

interpreted languages, damaged files,).

The best way when analyzing noise is to have a

manual analysis of the data. Besides the correct label of

the data analyzed, this type of analysis can provide you

with information regarding the feature extraction

methods.

Finding possible noise can be done in the

following way: searching similar files, based on the

possibility of discovering with a high degree of certainty

malware or clean files, if the source of a specific file is a

trusted one, using the distance to a hyper-place, or a

vote/ensemble system that uses the previously methods.

The main problem with the similarity method is that the

Similarity Score has to be computed for every pair

formed from one malware and one clean file. If we’re

using a large database (over 20 millions of record) than

the time needed to compute the similarity distance

between all of these pairs will be far too much for this

method to be consider a practical solution. There are two

things that can be done in this case: use a distributed

system to perform all of the operations or use a

clustering/classification method to split the large data

base into smaller ones that are more manageable.

In case of the second idea, different methods for

creating that tree were used – and for each method the

total number of clusters and the estimated time needed to

compute all of the similarity scores from that cluster

were computed.

Method Cluster

s

Max

cluster size

 Estimated

time

AbsDiff
958 6,314,834

177 days

00:49:01

F1
6,420 2,522,738

16 days

07:23:35

F2
6,380 4,253,007

11 days

07:54:03

Information Gain
12 9,784,482

1 year 132 days

17:39:51

Asymetric

Uncertainty
102 6,314,834

177 days

20:20:16

Median Close 42,541 61,705 3:30:08

ProcDiff 31,056 119,270 1:07:32

The selected methods were MedianClose (further

denoted as MC) and ProcDiff (further denoted as PD). On the

clusters/subsets created with these methods I’ve computed the

following distances (that worked as a Similarity function):

Manhattan (MH), Weighted Manhattam (WMH), CommonSet

(CS) (a score that measure the percentage of common

features from the total number of features that are present in

two records) and also some combination of those (votes). For

each method the following data were computed: Noise

percentage (NP) – represents the percentage of real noises

from the possible noises, Total noise percentage (TNP) –

represents the percentage of real noises found by a specific

method from the total real noises that exists in a database and

Global noise score (GNS) defined as follows:

𝐺𝑙𝑜𝑏𝑎𝑙𝑁𝑜𝑖𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = 𝑁𝑃 × 𝑘 + 𝑇𝑁𝑃 × 1− 𝑘

For this experiment the value of “k” was set to 0.5.

Method NP TNP GNS

(k=0.5)

MC_CS 5.62% 97.64% 51.63

PD_MH 14.02% 35.34% 24.68

PD_CS 7.73% 61.49% 34.61

V1_[MC_MH]_[PD_CS] 6.99% 65.34% 36.17

V1_[MC_CS]_[PD_WMH] 5.56% 97.99% 51.78

V1_[MC_CS]_[PD_MH] 5.58% 98.03% 51.80

V1_[MC_CS]_[PD_CS] 5.38% 99.73% 52.56

VALL_[MC_CSt]_[PD_CS] 8.74% 59.40% 34.07

The results showed that the CommonSet measure either

used alone or in combination with another measures can

provide very good results for noise identification in large

data bases.

Script malware research

This section includes the analysis of malware that

are not executed as a native code, but rather interpreted.

This category includes: various script base malware

(JavaScript, VBScript, AutoIT, and so on), virtual

machine base malware (Java or MSIL based malware),

document base malware (PDF, Microsoft Word, etc).

Since in all of these cases the original source can

be obtained, the mechanisms that these malware can use

are usually based on obfuscation techniques so that

reading and understanding that malware is quite

difficult. The most common one used are:

 Renaming every function, variable, class or

namespace to a randomly generated name

 Add different comment with random content

 Split strings into multiple values

 Use different arithmetic operations to obtain the

same result.

 Change the order of the code in such a way so that

the execution flow will remain unchanged

 Remove indentation if the language grammar allows

it

 Use specialized instructions like “eval” if the

language supports it, to create different layers of

obfuscation.

Even if the techniques required to analyze this

sort of malware are the same for similar languages, I will

focus on analyzing JavaScript malware and JavaScript

based documents (especially PDF documents) since this

is the most common type of malware. The special focus

in this case was to create clusters that will include

different malware families. The following approaches

were used:

 First one is a Hierarchical bottom up clustering and it

is based on a metric function that measures the

distance between two files. The main problem in this

case was O(n
2
) time complexity needed to compute

the distance between every possible pairs of files.

 The second method is based on a hash-table

algorithm and it was designed so that it will have a

linear time complexity and still have a very good

clustering accuracy.

Both of these approaches used a file fingerprint

(in this case a list of tokens from the files and their count

from witch some well known tokens used for

obfuscation (comments …) are removed). Two

experiments were made. First one was to see the speed

difference for clustering 10000 malicious PDF files

using the two previously described methods.

Clustering Algorithm Clustering time

Hash Table clustering 1 second

Hierarchical bottom up

clustering (using custom

metric distance – PDF

Metric)

1 day, 21 minutes, 33

seconds

It is obvious that the hash table clustering was

much faster. However, since the hierarchical bottom up

clustering needed one day to complete the clustering for

around 10000 files, it was not included in the clustering

process of the large data based (due to time constrains).

Then only the hash-table algorithm was used to cluster a

large data base of malicious PDF files (aprox.1 million

malicious PDF files). 419 clusters were created. To

verify the integrity of those clusters the 5 biggest one

were selected for manual analysis and for each of them

the actual number of files that should have been cluster

in the same cluster was computed.

Cluster Files Manually

analyzed files

Similar files in

the cluster

#1 90502 4600 100%

#2 63792 3200 99.9%

#3 43816 2200 100%

#4 33389 1700 99.8%

#5 27080 1500 100%

In two cases, in cluster #2 and #4 were some

scripts with slightly different tokens; however those

scripts looked more like a derivate from the rest of the

scripts than like a totally different script. This test proved

than having a variable normalization factor is much

appropriate for these databases than a fixed one.

GML Framework

GML stands for Generic Machine Learning

Framework. It was develop as a tool to help test and

research different machine learning algorithms. GML is

written in C/C++ with different inline optimizations and

assemble code.

It was design as a modular system with four

major components:

 Algorithm component. This is the main component

that receives data from other components and

performs the algorithm. It has a build-in

multithreading functions that allows one to easily use

parallelism for a specific algorithm

 A database component. This is the component that

holds the data in different formats (text, SQL, binary

…).

 A connector component. This component links the

algorithm component with the database component -

and translates the data from the database in a format

that is easily used by the algorithm components.

 A notifier component. This is a common global

component that is used to show information about

the state of the algorithm, database or the connectors.

All of these components have a library as a core unit that

provides different functionalities:

 Interfaces for database usage and types

 Support for different string operations

 Support for a JSON-like format

 Support for parallelization (multi-threading)

 Support for different list-based function

 Different mathematical operations that are usually

used in a machine learning algorithm (such as

different kernel function, distance function, hyper-

plane operation, and many more).

Over this architecture there is a Python wrapper that

allows one to easily use and adapt different algorithms.

Conclusion and Feature Work

This thesis presented different practical aspects

needed to improve malware detection mechanisms. All

of the methods presented should not be consider as

sufficient – in practice all of these methods are

complementary and work together with static and

dynamic detection and/or exclusion mechanisms as well.

However, the use of these methods will greatly

improve the proactivity and the detection rate of any

anti-malware product. As a particular case, applied on

BitDefender engines these methods increase the

detection rate to the point where most important

independent tests consider BitDefender to the product

with the best detection.

The work in this domain is far from being over.

With the new cloud technologies that become more

popular in the last two years new type of detection would

emerge. The idea is to combine the data that is receive

from different clients and create a semi-unsupervised

system that would adapt itself to new malware attacks.

This will not be an easy task, as the quantity of data that

can be received from every client can be huge. All of the

algorithms will have to be design for both local and

cloud decisions creating a sort of large neural network.

The use of cloud system for malware detection will

allow other algorithms (like support vector machine or

artificial neural networks) to be used. These algorithms

are normally consider not to be practical as they need

space and computing power that is not available on a

client local machine. However, moving this sort of

detection into cloud and combining with different

parallelization methods may create newer and better

detection methods.

The evolution of graphical video cards is also a

new direction that can be considered as important.

Newer graphic video cards have multiple processors that

can highly improve the time needed for data processing.

Similar operations can be performed using cloud

processing units.

Last but not least, similar researcher as this thesis

can be perform on other platforms – as Android malware

tends to grow newer and different methods should be

created for this type of threat.

